Электронный учебник: |
Основные этапы становления современной математики
|
«Развитие теории и методологии в области математики и информатики» |
В конце XVII и в XVIII веке все возрастающие запросы практики и других наук побуждали ученых максимально расширять область и методы исследований математики. Понятия бесконечности, движения и функциональной зависимости выдвигаются на первое место, становятся основой новых методов математики. В XIX веке начинается новый период в развитии математики – современный. Накопленный в XVII и XVIII вв. огромный материал привел к необходимости углубленного логического анализа и объединения его с новых точек зрения. Связь математики с естествознанием приобретает теперь более сложные формы. Новые теории возникают не только в результате запросов естествознания или техники, а также из внутренних потребностей самой математики. Теория групп ведет свое начало с рассмотрения Лагранжем групп подстановок в связи с проблемой разрешимости в радикалах алгебраических уравнений высших степеней. Именно на этой почве были получены результаты Руффини и Абелем, завершившиеся несколько позднее тем, что французский математик Э.Галуа при помощи теории групп подстановок дал окончательный ответ на вопрос об условиях разрешимости в радикалах алгебраических уравнений любой степени. В середине XIX в. английский математик А.Кэлли дал общее «абстрактное» определение группы. Норвежский математик С.Ли разработал теорию непрерывных групп. Усиленно разрабатывается теория дифференциальных уравнений с частными производными и теория потенциала. В этом направлении работают большинство крупных аналитиков начала и середины XIX века: К.Гаусс, Ж.Фурье, С.Пуассон, О.Коши, П.Дирихле, М.В.Остроградский. Дифференциальная геометрия поверхностей создается Гауссом и Петерсоном. Для выработки новых взглядов на предмет геометрии основное значение имело создание Лобачевским неэвклидовой геометрии. Построив неэвклидову тригонометрию и аналитическую геометрию, он дал все необходимое для установления совместности и полноты системы аксиом этой новой геометрии. Развивалось долгое время и проективная геометрия, связанная с существенным изменением старых взглядов на пространство. Плюккер строит геометрию, рассматривая в качестве основных элементов прямые, Грассман создает аффинную метрическую геометрию n-мерного пространства. Уже в гауссовой внутренней геометрии поверхностей дифференциальная геометрия освобождается от неразрывной связи с геометрией Евклида. Ф.Клейн подчиняет все разнообразие построенных к этому времени «геометрий» пространств различного числа измерений идее изучения инвариантов той или иной группы преобразований. В 1879-1884 г.г. публикуются работы Кантора по общей теории бесконечных множеств. Только после этого могли быть сформулированы современные общие представления о предмете математики, строении математических теорий. Во второй половине XIX в. начинается интенсивная разработка вопросов истории математики. Чрезвычайное развитие получают в конце XIX в. и в XX в. все разделы математики, начиная с самого старого из них – теории чисел. Немецкие и русский математик Е.И.Золотарев закладывают основы современной алгебраической теории чисел. В 1873 г. Ш.Эрмит доказывает трансцендентность числа ℮, а в 1882 г. Ф. Линдеман – числа π. В России по теории чисел блестяще развивают А.Н. Коркин, Г.Ф. Вороной, И.М. Виноградов и А.А. Марков. Продолжают развиваться классические отделы алгебры. Подробно исследуются возможности сведения решений уравнений высших степеней к решению уравнений возможно более простого вида. Основными отделами, привлекающими значительные научные силы, становятся дифференциальная и алгебраическая геометрия. Дифференциальная геометрия евклидова трехмерного пространства получает полное систематическое развитие в работах итальянского математика Е.Бельтрами, французского математика Г.Дарбу. Позднее бурно развивается дифференциальная геометрия многомерных пространств. Это направление геометрических исследований создано работами математиков Т.Леви-Чевита, Э.Картана, Г.Вейля. Французкие математики глубоко разрабатывают теорию целых функций. Геометрическую теорию функций и теорию римановых поверхностей развивают А.Пуанкаре, Д.Гильберт, Г.Вейль, теорию конформных отображений – русские математики И.И.Привалов, М.А.Лаврентьев, Г.М.Голузин. В результате систематического построения математического анализа на основе строгой арифметической теории иррациональных чисел и теории множеств возникла новая отрасль математики – теория функций действительного переменного. Наибольшее внимание в области теории обыкновенных дифференциальных уравнений привлекают теперь вопросы качественного исследования их решений. Все эти исследования получили широкое развитие в России. Качественная теория дифференциальных уравнений послужила для Пуанкаре отправным пунктом для продолжения лишь едва намеченных Риманом исследований по топологии многообразий. Теория дифференциальных уравнений с частными производными еще в конце XIX в. получает существенно новый вид. Аналитическая теория отступает несколько на задний план, т.к. обнаруживается, что при решении краевых задач она не гарантирует «корректности». Значительным дополнением к методам теории дифференциальных уравнений при изучении природы и решении технических задач являются методы теории вероятностей. В конце XIX в. и в XX в. большое внимание уделяется методам численного интегрирования дифференциальных уравнений. Таким образом, разработанные в первой половине XIX века способы обоснования и методы математики позволили математикам перестроить математический анализ, алгебру, учение о числе и отчасти геометрию в соответствии с требованиями новой методологии. Новая методология математики способствовала преодолению кризиса её основ и создала для неё широкие перспективы дальнейшего развития. Дальнейшее развитие математики, вплоть до конца 19-го – начала 20-го веков имело в основном прагматический характер, когда математика применялась как эффективное средство для решения физических, астрономических и других прикладных задач. В то же время никогда не снимался вопрос о «законных» средствах построения математических понятий и доказательств. Ввиду отсутствия самого понятия математической логики, главным инструментом доказательств являлась интуиция. Интуиционизм, как определённое направление в математике, возник в начале 20-го века, в основном благодаря трудам Л.Брауэра и А.Гейтинга. В его основе лежит номиналистическая тенденция ограничить математику только такими понятиями, которым можно придать «реальный смысл». К числу основных достижений 20-го века в области оснований математики следует отнести: . Выработку понятия формального языка и формальной системы (исчисления) и порождаемой ею теории. . Создание математической логики в виде непротиворечивой семантически полной формальной системы. . Создание аксиоматизированных формальных теорий арифметики, теории множеств, алгебраических систем и других важных разделов математики. . Формальное уточнение понятий алгоритма и вычислимой функции. . Арифметизация и погружение в формальную теорию таких важных понятий метаматематики, как доказуемость, непротиворечивость и др., что позволило решать многие метаматематические проблемы математическими средствами. Перечисленные достижения потребовали осознания и уточнения многих важных математических и метаматематических понятий таких, как язык, синтаксис и семантика математических теорий и др. Всё это позволило взглянуть на проблему оснований математики с новых позиций по сравнению с предшествующими временами. Потребности развития самой математики, «математизация» различных областей науки, проникновение математических методов во многие сферы практической деятельности, быстрый прогресс вычислительной техники приводят к перемещению основных усилий математиков внутри сложившихся разделов математики и к появлению целого ряда новых математических дисциплин. На основе задач теории управляющих систем, комбинаторного анализа, графов теории, теории кодирования возникла дискретная, или конечная математика. Вопросы о наилучшем (в том или ином смысле) управлении физическими или механическими системами, описываемыми дифференциальными уравнениями, привели к созданию математической теории оптимального управления, близкие вопросы об управлении объектами в конфликтных ситуациях — к возникновению и развитию теории дифференциальных игр. Исследования в области общих проблем управления и связанных с ними областях математики в соединении с прогрессом вычислительной техники дают основу для автоматизации новых сфер человеческой деятельности. |